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Generalization of an Aging Model 
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Here we present generalizations of a recently proposed aging model to include 
several ages and the "Dauer" state. The results show that increasing the number 
of ages does not matter in one version of the model, but matters in another 
version, and that the Dauer state does provide a favorable mechanism for 
survival. 
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Recently, a number  of  attempts have been made to tackle the problem of 
aging by simulating a simple model with the help of  a computer  (refs. 1 and 
2 and references therein). These models make some crucial simplifications 
of the biological processes and therefore it is important  to check whether 
the results are only the (fortuitous) outcome of  the simplifications them- 
selves. Thus, in order to take the models seriously, one has to remove some 
simplifications and check that the essential results still stand. This is the 
basic motivat ion of the present paper. We consider a model which has 
given some encouraging results recently. "'2~ This model assumes a three- 
age structure, following Partridge and Barton. (~ (Thus, a populat ion is 
assumed to consist of  babies, juveniles, and adults having ages 0, 1, and 2, 
respectively.) In one version (called M1 in ref. 2) the probability of  survival 
from age 0 to 1 or  1 to 2 can have any value between 0 and 1, but in 
another version (called M2 in ref. 2) it can have only some discrete values 
(regularly spaced) between 0 and I. With M1 one can handle only a small 
(100,000 or so) population,  but with M2 one can simulate the behavior of  
an infinite population. 

First we attempted to introduce more ages in M1 and M2; thus, now 
the populat ion consists of  individuals of  ages 0, 1, 2,..., K, where K >  2. This 

Institut fiir Theoretische Physik, Universit/it zu K61n, 50937 Cologne, Germany. 

483 

0022-4715195/0400-0483507.50/0 �9 1995 Plenum Publishing Corporation 



484 Heumann and H6tzel 

had trivial effects in M1, but nontrivial effects in M2. Very recently a 
similar analysis has been made by Penna34~ Next we tried to introduce the 
"Dauer" state in M1. The Dauer state provides a way ~5'6) for several kinds 
of life forms (e.g., the nematode Caenorhabditis elegans) to survive hard 
times. (However, depending on external circumstances, the Dauer state 
may also prove to be a hindrance for existence, thus justifying the existence 
of life forms without the Dauer phase, such as human beings.) The results 
show that the availability of a Dauer state in the model M1 supports the 
survival of species for a proper choice of the parameter values. 

With K ages introduced in M1, one has the following model: The 
population consists of individuals each having age 0 or 1 or 2 or ... or K, 
and each carrying survival probabilities Jo, J~, J2 ..... J r -  i. In each time step 
(generation) an individual of age k suffers mutation and gets its survival 
probabilities Ji ( i = 0 ,  1,2 ..... K - l )  altered to j ~ = j i e x p ( e )  and then it 
survives to an individual of age k + 1 (with probability j~,) and gives birth 
to a baby ( a g e = 0 )  having survival probabilities J'o,J'l,J'2 ..... J K - - I "  The 
persons of age K die after giving birth. The quantity e is chosen as a 
random number between el and eh, which, in turn, are parameters of the 
model. We chose el, =0.02 and e l = - 0 . 0 4  (Fig. 1), in accordance with 
ref. 1. With K =  11 (11 ages), the result is that the population and average 
surviv.al probability for ages K~< 2 attain stationary values of reasonable 
magnitude and those for'~ges K >  2 vanish. Thus the extended version for 
11 ages reduces to the one for 3 ages. 

On the other hand, for an extension of the model M2 to K ages, one 
needs an L K- ~ lattice in a (K-1) -d imens iona l  fitness space, where L is a 
parameter of the model. Along the ith axis is plotted the survival proba- 
bility j;, which can have values 0, l /L,  2 /L ..... (L - 1 )/L, 1. Each individual 
is associated with a lattice point. The effect of mutation is to keep an 
individual unmoved or to move it along any of the axes one step forward 
(thus increasing the survival probability) or one or two steps backward. 
The total amount of memory required depends on the parameters L, K, but 
not on the population, so that one can simulate an infinite population by 
measuring the population always in units of the initial population (some 
large number). However, one cannot use high values of L or K and we 
could use only K = 5  and L = 2 0  (Fig. 2), which needs 5 MB of memory 
and 3 hr of computation time (for 500 generations) in our machine. (This 
choice of L keeps the mutation rate at the same order of magnitude as in 
ref. 2.) Apart from L and K, there is another parameter b, which is the 
number of babies to which each individual gives birth after surviving a 
generation. We adjusted b so that the rate of growth (and decay) of the 
population is minimum. We found that for b =0.5154, the population and 
survival probabilities are stationary and, unlike the case of M1, the 



Generalization of an Aging Model 485 

2500 

2000 

1500 

1000 

500 

0 
0 

~,~ '~ i 

i i i i i i ~ i 

( 000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Generations 

0.8 

=~' 0.6 

0.4 

0.2 

b 

l i i 

2 0 4000 6000 8000 10000 
G e n e r a t i o n s  

Fig. 1. (a) Population and (b) survival probabilities for ages 0, 1, 2, 3 (top to bottom, 
respectively) for the model MI with the parameters eh=0.02, e l=  -0.04. We started with 
4000 babies all having initial survival probability 1. The maximum possible population was 
10,000 (tiffs number is important for the food restriction factor(~'2)). 
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Fig. 2. (a) Population and (b) survival probabilities for ages 0, 1, 2, 3, 4 (top to bottom, 
respectively) for the model M2 with the parameters L = 20, K =  5, b = 0.5154. We started with 
a large number of babies all having initial survival probability 1 and measured all types of 
populations in units of this number. 
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Fig. 3. Plot of the stationary values of the survival probabilities Ji (taken from Fig. 2) versus 
i (diamonds). The plot of (Ji- Ji +l)/Ji versus i + 0.5 is also shown (crosses). 

s ta t ionary  values are all nonzero.  Thus the extended version of  M2 for five 
ages does not reduce to one for three ages. I t  is interesting to plot  the 
s ta t ionary  values of  the probabi l i t ies  j~ versus i (Fig. 3), which shows a 
clear downward  trend. Also, the plot  of ( j~- j~+ l)/J~ versus i is a s traight  
line, which indicates an exponent ia l  decrease with respect to the age. 

To include the Dauer  state in the Mode l  M1 (with K =  3), we t reated 
this state as a de tour  from age 0 to age 1 (Fig. 4). An individual  of  age 0 
may,  with p robabi l i ty  d, go over  to the Dauer  state. In each generat ion,  a 

Schematic diagram of the model MI with the Dauer state (R indicates reproduction). 
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Extinction of the population without the Dauer state, sb = 0.01. 
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Fig. 6. The population survives with d =  0.1, sb = 0.01. 
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person sleeping in the Dauer state suffers mutation [survival probabilities 
are multiplied by exp(e)] and then may (with probability 1 - d )  go over to 
age 1 (and give birth to one baby) or stay in the same state, e is chosen 
(as before) as a random number between eh (=0.01) and et (= -0.015). 
The food restriction factor (see refs. 1 and 2 for details) is now more 
complicated, since the individuals in the Dauer state do not consume food, 
but do consume space. This factor is taken to be 

[ 1 - ( n t + ~ o ) / n , l  2 

where n, is the total number of babies, juveniles, and adults, nd is the 
number of individuals in the Dauer state, and n; (=  100,000) is the initial 
population. The choice of this factor is somewhat arbitrary and the sole 
purpose of it is to prevent (in a reasonable way) the population from 
exceeding the available computer memory. Every tenth summer is assumed 
to be "bad," in the sense that all the survival probabilities are decreased by 
a factor Sb. We chose d=0.1  and sb=0.01, and found the result that 
without the Dauer state, the population dies out as a consequence of the 
bad summers (Fig. 5), but with the Dauer state the population is sustained, 
according to our expectations (Fig. 6). The results remain qualitatively 
similar for other d values. (We always started with 1000 babies each having 
juvenile and adult survival probabilities equal to 1.) 

Another model for the Dauer state was also tested (Fig. 7), but for 
higher Dauer factors (d>0.5)  it gives the unnatural prediction that the 
survival probability for adults is greater than that of the juveniles. 

In short, the models M1 and M2 used in refs. 1 and 2 have been 
generalized to more ages and to include the Dauer state and the models 
have been found to stand reasonably the test of generalization. 

Fig. 7. Diagram of an alternative model for the Dauer state. 
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